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1.0 Summary 

This work presents results exploring the use of dynamical structure functions, and their 
associated signal structure, as a modeling tool to map and detect the interference structure 
in wireless mesh networks. As wireless networks become more pervasive, it is increasingly 
important  to have efficient  algorithms for mapping the network and detecting interfering 
devices that can impact performance. Recent work on partial structure representations of 
linear time invariant controlled dynamic systems offers a vehicle for addressing these issues 
in new and efficient ways. In particular, we use the signal structure, which is the open- 
loop causal relationships among signals, to represent causal relationships between links in 
a wireless network. To accomplish this, we develop a smooth, differential equation model 
for the 802.11 MAC and validate it using ns-3 simulations.  We then propose a network 
mapping protocol that constructs the signal structure of the network during live operation 
using O(n) perturbation experiments. Each experiment deliberately changes the sending 
rate on a particular link, while monitoring the actual rates realized across the network. 
The resulting map indicates causal relationships between link rates, rather than its physical 
topology. This allows us to detect intrusive devices that temporarily disrupt communication 
and impair system performance. 

To support this use of the signal structure for mapping interference in wireless mesh 
networks, we also extend previous theoretical work in the conditions needed to reconstruct a 
network from data. In particular, we demonstrate precisely the a priori structural 
information that is both necessary and sufficient to reconstruct a network from input-
output data. 

We then consider the security issues arising from networks with particular structures 
and develop a theory of vulnerability for both open and closed loop systems.  We consider 
destabilizing attacks, which are attacks on a single link within a system that could potentially 
destabilize the entire system. We define the vulnerability of a link to be the inverse of the 
effort required on that link to destabilize the system. With these definitions, we formulate two 
problems where we wish to minimize vulnerability. The first, the open-loop problem, exists 
when we are given a fixed system design and have complete control over its implementation. 
We show that for such a system, we can always create a completely-secure implementation 
an implementation with zero vulnerability if we eliminate all internal feedback from the 
systems structure. The second, the closed-loop problem, occurs when there exists some 
restrictions to the systems implementation.  In particular, we consider the case where 
the system is implemented by two subsystems of given design are connected in feedback. 
We show that the vulnerability of one system is only dependent on the design and not the 
implementation of the other.  We then show that removing internal feedback from a 
subsystem does not necessarily minimize vulnerability; that it is possible to fight fire with 
fire and use internal feedback to combat the vulnerability introduced by connecting systems 
in feedback. 

Finally, we consider the problem of synthesizing systems with a particular network 
structure.   In particular, we consider the design of feedback controllers that  are designed 
to stabilize a given unstable system but must have a particular (specified) network 
structure. Although this problem is known to be hard in general, we consider a particular 
heuristic and demonstrate that either our design process yields stabilizing controller with 
the desired structure, or no such controller exists. 
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2.0 Introduction 
The study of network environments have received considerable attention from various 
disciplines over the last 20 years. This is in part due to the rise of the internet, but it also 
is due to advances in biology that have brought new kinds of networked “machines” into 
clear view that contrast sharply with our solid-state, engineered systems. The research 
discussed here takes a fresh view of these new, “complex” network environments and 
answers fundamental questions about 1) the design of experiments necessary to discover 
their structure (and thus adapt system inputs to optimize the resulting performance), and 
2) the relation- ship between network structure to vulnerability and attack, and 3) the
design of stabilizing feedback systems that respect a particular network structure. 

Specifically, this work explores these issues in the context of both wireless mesh networks. 
This research unites theoretical work that clarifies fundamental limitations of complex net- 
works with network engineering to implement specific designs and experimentally verify the 
theoretical discoveries in what we call the “network design cycle.” Although more work is 
needed to compare that behavior of real networks with our models, this work lays a clear 
foundation for subsequent results. 

2.1    What is a “complex” networked  environment? 
The descriptor “complex” has been used in other studies to characterize networks that are 
large, meaning that a graph used to represent the network has a large number of nodes. 
Often the number of edges is also taken to be large and devoid of certain regular structure, 
so that, for example, a tree-structured graph would not be considered “complex.” In these 
studies one typically looks for hidden regularities or patterns that characterize the structure 
of the graph in simple terms in spite of these other “complexities.” A typical example would 
be small-world networks. 

In this work, we consider different environments, where “network” refers to an inter- 
connected dynamical system. In these environments, system behavior is as important a 
characteristic of the network as is its structure.  The descriptor “complex” then refers to 
both the network behavior as well as its structure. 

This work addresses networks with complex behavior by considering systems with 
underlying nonlinear dynamics and noisy measurements.  As a first step, the results 
presented here leverage Lyapunov theory to apply linear analysis locally to regions near 
equilibria of the underlying nonlinear system.  Extending these results globally to the 
underlying non- linear system is not immediately obvious and requires new thinking about 
the meaning of structure, beyond that already developed in this research. As a result, 
global analysis is left for future research. 

This work also addresses networks with complex structure. Besides the usual definition, 
of a “complex” network structure represented by a graph with a large number of nodes and 
non-trivial edge patterns (e.g. allowing for arbitrarily  complicated  feedback relationships), 
this work also makes a particular contribution by developing representation and analysis tools 
applicable to networks of dynamical systems with potential hidden entanglements among un- 
measured variables. This “potential entanglement” type of network complexity is previously 
unaddressed in the literature, yet it becomes particularly important for inferring network

2 
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structure from behavioral data. 
Appreciating the power of structural representations that allow for potential 

entanglement among unmeasured variables to simplify network inference problems is 
subtle, but it is a central contribution of this research program. Consider, for example, a 
network that is composed of the interconnection of various subsystems.  By definition, 
each subsystem’s internal states only affect that subsystem, and the interconnection 
variables are themselves measured quantities. Inferring this network “subsystem” 
interconnection structure from data thus demands the discovery of the true partition of all 
of the system’s unmeasured states into their appropriate subsystem components. 
Discovering such a partition from measured data can be extremely difficult or impossible. 
This research, on the other hand, leverages a different representation of system structure, 
called signal structure, that does not rely on the idea of subsystems and allows for potential 
entanglement among unmeasured states. As a result, inferring a system’s signal structure 
requires much less information, and thus fewer experiments, than inferring a system’s 
subsystem structure. 

One contribution of this research is to thoroughly understand the relationships between 
a system’s subsystem and signal structures.  Often, systems with solid-state components 
(such as routers in the internet) have subsystem and signal structures that are equivalent. 
Sometimes, however, systems have a fluid-like character (such as bio-chemical reaction net- 
works or wireless mesh networks) and the resulting subsystem and signal structures can be 
very different. Characterizing informativity conditions and developing scalable algorithms 
for network reconstruction (i.e. inference) of signal structure are among the primary 
theoretical contributions of this effort.  These models of complex networked environments 
also facilitate a novel robustness analysis that leads to new results about system vulnerability 
and security. Moreover, designing systems that meet network constraints yet accomplish 
specific tasks, such as the stabilization of a given system, is known to be a hard problem. 
Nevertheless, we offer a heuristic that either results in the desired design or proves no such 
design exists. These contributions are highlighted when applied to complex network 
environments that exhibit both the behavioral and structural complexity as described. 

2.2    What is the network design cycle? 
Besides the theoretical contributions of this work, this research represents an active 
collaboration between theoretical development and physical implementation and testing 
on real complex networks. This collaboration is most evident in our work on wireless 
mesh networks, where active modeling and protocol design efforts lead to simulation, 
implementation, and experimental testing on our live wireless mesh test-bed. Similar 
collaborations for bio-chemical reaction networks began to emerge during this study, but 
the implementation and experimental testing is incomplete and part of ongoing research. 

The network design cycle defines the scientific process we engage that unites our 
theoretical and applied work. The next section discusses how we use the Network Design 
Cycle to interconnect our theoretical results to applications, such as wireless mesh 
networks. Section 3 then details our results modeling wireless mesh networks, developing 
informatively conditions for network reconstruction, introducing a theory of vulnerability, 
and presenting a heuristic for designing stabilizing distributed feedback controllers  with a 
specific network structure (or showing that no such controller exists). 

3 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Mathematical 
Model 

Problem 
Formulation 

Algorithms 
and Protocols 

Implementation Experiments 

Figure 1: The Network Design Cycle 

3.0 Methods, Assumptions, and Procedures 

To address these problems, our work uses a method we call the Network Design Cycle, as 
shown in Figure 1. We start by formulating a mathematical model of the network, precisely 
characterizing how it operates. In a wireless network, this may involve describing how nodes 
interact via carrier sensing and interference. Based on this model, we carefully formulate 
the research problem, such as providing optimal performance or detecting malicious nodes. 
The next step is to design algorithms and protocols that will solve the problem. We then 
implement the solution, which often requires considering additional complexities that arise 
when building and deploying code on a network. Finally, we run experiments to validate that 
the solution works as designed, for example by providing optimal performance or security 
guarantees. If performance deviates from what is expected, this means that our original 
model or problem formulation was wrong.  This leads to another iteration of the design 
cycle, where we create a refined model or reformulate the problem. 

For the steps that involve implementation and experimental evaluation, we use a variety 
of tools. We use MATLAB to numerically evaluate algorithms, ensuring that they converge 
to the expected solution and, in some cases, provide optimal performance. For experimental 
testing, we use a wireless mesh network deployed in our department’s building, consisting 
of 30+ computers configured as wireless routers, spread over two floors. The mesh network 
can be configured so that it uses 802.11a, and we ensure that we select a channel with no 
other traffic, so that we can run experiments without any outside noise when desired. Our 
protocols are implemented using WiFi, a toolkit developed with funding from NSF that 
enables rapid deployment of experimental wireless protocols in user-space. 

4    Results and Discussion 

4.1  Using signal structure to map and detect interference in 
wireless mesh networks 

4.1.1    Background 

Dynamical structure functions are a representation for linear time invariant systems 
developed in [5]. A DSF gives a partial representation of the structure of the system, namely 
how the inputs affect the manifest states and how the manifest states affect each other. A 
brief derivation is provided below; for a full derivation see [17]. 

Let us consider a state-space LTI system
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Here y are the states that are measured, and x are the hidden states. Note that the 
assumption in the second equation is made for notational convenience. 

Taking Laplace Transforms of the signals in (1), we get 

Solving for X in the second equation of 2 gives 

X = (sI − A22)−1A21Y + (sI − A22)−1B2U 

Substituting into the first equation of (2) we get, 

sY = W Y + V U, 

where W = A11 + A12(sI − A22)−1A21  and V = A12(sI − A22)−1B2 + B1. Let D be a diagonal 
matrix with the diagonal entries of W . Then, 

(sI − D)Y = (W − D)Y + V U. 

Now we can rewrite this equation as, 

where 

Y = QY + P U, (3) 

Q = (sI − D)−1(W − D) 

P = (sI − D)−1V. 

The matrix Q is a matrix of transfer functions from Yi  to Yj , i /= j, relating each measured 
signal to the other measured signals. A nonzero entry in Qji  says that the signal Yi  affects the 
signal Yj  either directly or through some hidden states. Note that Q is zero on the diagonal 
and either zero or a strictly proper transfer function on the off diagonal. The matrix P is a 
matrix of zeros or strictly proper transfer functions from each input to each output without 
depending on any additional measured states. Together, the pair (Q(s), P (s)) is called the 
dynamical structure function for system (1). The transfer function matrix for this system 
is given by 

G = (I − Q)−1P = C (sI − A)−1B. 
An example of the dynamical structure function representation of an LTI system is given in 

5 
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Example1.   Example 1. Let us consider a system with two measured states given by the 
following state space equation.  

Figure 2 shows a graphical view of this system in various representations. Figure 2(a) 
shows the state space realization of the system, which contains information about the 
dependency among input, state, and output variables. Essentially, the state space of the 
system defines both the structure and dynamics of the entire network. A simpler 
representation is shown in Figure 2(b), the system’s transfer function contains the dynamics 
of the system, but yields no information about the structure of the network. In Figure 2(c) 
the DSF of this system shows the relationship between the measured states, y1 and y2, 
something not visible from the system’s transfer function. In the situations when a complete 
state space model of the system cannot be obtained, a DSF model of the system can be used 
to obtain a partial structure of the system. Note that when all the states are measured, 
DSF models give the actual structure of the system.  

For a given network system, if we know sufficient information about how the inputs affect 
the measured states then we can reconstruct the DSF of the system from the input-output 
data.  A sufficient  condition for the reconstructibility is that if P is square and diagonal 
and G is invertible[5]. This method has been used successfully to identify the structure of 
biochemical networks in [7]. Since these biological systems are highly nonlinear, an 
equilibrium is chosen for the reconstruction. Then, the input is provided as small 
perturbations to the equilibrium input and the corresponding perturbed outputs are 
measured. Once the inputs and equilibrium outputs are collected, reconstruction can be done 
using the technique described in [18]. 

(4) 

6 
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y 

u y y u 

u
(a) Complete structure of the system (4).  This can be obtained if the state space model of the 
system is known. 

u1
g21

g12

u2

g11
1 

y2 
g22 

(b) Structure given by the Transfer Function of system (4). 

q12

p11
1 1 

p22
2 2 

q21

(c) Structure given by the DSF of system (4). 

Figure 2: Structures given by:  (a) the state space, (b) the transfer function, and (c) the 
dynamical structure function. Here, x1 is a hidden state: it is not measured directly and as 
a result is not seen in the DSF representation. 
4.1.2  Modeling the 802.11 MAC 

Our mapping methodology uses the reconstruction method given in [18], which assumes that 
the actual nonlinear system is smooth, i.e. it can be modeled as a system of differential 
equations. However, we know that wireless networks are discrete event systems with 
dynamics determined by the choice of the sending nodes to send packets at certain times. 
In this section, we show that although wireless networks are discrete event systems, their 
equilibrium properties  as well as the transition dynamics can be captured by differential 
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dbi 

1+e−αb 

equations. Model Description 
We seek to develop a continuous, differential model for the carrier sensing and back-

off behavior of the 802.11 MAC. Packets sent to the MAC layer from TCP and IP are queued 
in the MAC layer until they can be transmitted. Queued packets are sent as soon as 
possible, leading the MAC to consume all available bandwidth. Instantaneous sending rates 
are either zero or the full link speed.  To facilitate analysis, we consider instead the average 
rate over a sliding window. This smooths the discontinuities of instantaneous rates and 
allows us to accurately model rate dynamics with differential equations. 

We consider wireless networks from a link point of view. Let xi denote the normalized 
sending rate of link i and let bi   denote the buffer size. The rate of change in the buffer 
size is the difference between the rate of packet arrival and departure from the buffer, i.e. 
dt   = ui − xi  where ui  is the rate at which packets are sent from higher layers to the MAC 
layer. 

The dynamics for xi  should move xi  to consume the available rate. To determine how 
much bandwidth is available to link xi, it is useful to view normalized rates as the probability 
that a particular link is active at a given time.  The bandwidth available to link i is the 
probability that none of the links are active which contend with link i. 

Let Xi  denote a Bernoulli random variable indicating whether link i is broadcasting, i.e., 
P (Xi  = 1) = xi  and P (Xi  = 0) = 1 − xi.  Similarly, let X̄i  be a Bernoulli random variable 
indicating whether any link contending with link i is broadcasting. By the Law of Total 
Probability, the bandwidth available to link i is 

P (X̄i  = 0) =P (Xi  = 1)P (X̄i  = 0 | Xi  = 1) 
+P (Xi  = 0)P (X̄i  = 0 | Xi  = 0). (5) 

We assume that two contending links never broadcast concurrently, so P (X̄i  = 0 | Xi  = 
1) = 1.  We assume temporarily, for clarity of exposition, that link i is the only common
link between cliques. 

To avoid wasting bandwidth, the available rate should only influence the dynamics for link i 
when there are buffered packets ready to be sent. This effect could be modeled using a step 
function but would introduce a discontinuity into the dynamics. Instead, we use a
sigmoid  as a continuous approximation, i.e., σ(b) =   1  where α dictates the slope of the 
sigmoid at zero. For our simulations,  we let α = 1. 

The 802.11 MAC dictates short periods of mandatory silence following  each transmission. 
In addition to fixed length delays, stations are required to wait for a period of random 
duration before transmitting.  This is done to avoid collisions caused by multiple stations 
attempting to broadcast immediately following the end of a transmission. The random 
back-off time is chosen uniformly within a range known as  the contention window.  The 
combination of mandatory silence and the random back-off decreases the maximum achievable 

throughput. We denote the proportion of achievable throughput for link i by βi  ∈ (0, 1). 
The overall dynamics for a topology having at most one common link between any two 

cliques are 

8 
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To generalize the result to allow for more overlap between cliques, let 

Oi  = {i} ∪ {j : ∃k, l, k /= l, j ∈ Lk , j ∈ Ll , and k, l ∈ Ci} 

denote the set of links common to multiple cliques in Ci.  The union with {i} ensures the 
model simplifies correctly in the case where  link i belongs to a single clique. Allowing for 
this in the preceding development leads to the dynamics 

Methodology
To validate our model we compare a MATLAB computation of the differential model 

to packet-level ns-3 simulations. (For validations of the ns-3 simulator itself, see [3].)  We 
simulate various contention relationships and monitor all carrier sensing behavior in the 
network. We calculate rates for a link as the normalized ratio of successful channel accesses 
as compare to total airtime. 

For each simulation, we create a wireless network consisting of a set of senders and 
receivers placed a fixed distance from one another. An application at each sender transmits 
packets of uniform size to its designated receiver counterpart at a specified rate.  The u 
parameter of our model represents the rate  at which packets are sent  from higher layers 
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to the MAC layer. Host start times are staggered in one second increments, and run for a 
duration of 500 seconds. During this time, whenever a host successfully captures the medium, 
i.e. clears carrier sensing, a logger hooked into the MAC layer records this information along 
with a timestamp. It is the collection of this data across all sending hosts in the network 
that comprises our data set. 

Each host in the simulated environment houses a full network stack, utilizing the IEEE 
802.11g protocol for communication. Link speeds are set using a baseline of 6 Mbps, the 
default 802.11 access point broadcast rate.  End-to-end transmission is achieved via the 
UDP transport protocol, avoiding the extra complexities of reliability and congestion control 
inherent in TCP. Standard Ethernet MTU packet sizes of 1500 bytes are used, and MAC 
layer retries are disabled, so as to avoid influencing simulation results. 

Validation 
We validate our model using three different topologies, involving paths and cycles of 

various lengths. We construct chain topologies such that all nodes are equally spaced along 
a straight line, and for any three sequential  nodes along the path, the left node and right 
node are in contention range only of the center node and not with one another,  whereas the 
center node is in contention range with both edge nodes. We construct cycle topologies as 
regular n-sided polygons, where each node contends with exactly two other nodes, its direct 
neighbors. 

We begin the validation with a 3-chain, or a man-in-the-middle topology. As shown in 
Fig. 3, both our model and the simulator accurately capture the starvation of the link in the 
middle, a well-known result. In this case, our model uses U = [1 1 1], α = 1, and β = 0.875. 
A controller for this network would limit  the sending rates of the outer links, allowing the 
link in the middle more bandwidth. When the outer links are given reduced rates, our model 
agrees very closely with ns-3 in giving the additional bandwidth to the link in the middle. To 
do this, the β parameter in our model must be varied, a direct result of differing contention 
window sizes affecting  how much of the channel capacity is lost to overhead. 

The next topology we consider is a chain of six links. As shown in Fig. 4, both our model 
and ns-3 capture the behavior of the MAC properly in this case. In this case our model uses 
U = [1 1 1 1 1 1], α = 1, and β = 0.85. Removing the contention between links 3 and 4 
would result in two man-in-the-middle topologies starving links 2 and 5. However, with this 
contention between links 3 and 4 reduces their achievable sending rates, which in turn allows 
more airtime for links 2 and 5. 

Fig. 5 shows simulation results from a cycle of six links.  In this case our model uses 
U = [1 1 1 1 1 1], α = 1, and β = 0.85. The ns-3 results for this topology show considerable 
short-term variation in link rates over time. This is a result of short-term (on the order of 
a second) starvation among the links. Stations alternate between starvation and exclusively 
capturing the medium within the link’s cliques. The irregular alternations combined with a 
sliding window average results in the plot shown in Fig. 5. We reiterate that our model does 
not attempt to predict such fast dynamics but seeks to accurately predict average rates. 

Finally, we use a bowtie topology, consisting of a four links arranged in a square, with 
a single link in the middle. Like the man-in-the-middle topology, the middle link is easily 
starved. The differential model is again accurate in capturing the dynamics and steady-state 
behavior of the MAC in this case, with U = [1 1 1 1 1], α = 1, and β = 0.9. 
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4.1.3    Wireless Network Mapping 

Having modeled the IEEE 802.11 MAC using differential equations, we can now construct 
the signal structure of the network using a robust reconstruction  process. The 
reconstruction process allows us to determine the DSF from noisy data collected from 
perturbation experiments on the wireless network. The procedure we utilize is a 
generalization of the one detailed in [18]. We first present a mathematical description of 
the general robust network reconstruction process before providing an algorithm that 
applies this process to a wireless network. 

General Network Reconstruction Process 
Solving the network reconstruction problem from noisy data means determining  the 

correct structure of the Q matrix, which shows the interaction between measured links in 

the wireless network. If there are p links in the network, then Q has p2 − p unknowns and 

we want to quantify the smallest distance from the system’s transfer function G to all 
possible boolean structures for Q, noting that there are 2p2 −p of them. Small distances will 
correspond to candidates for the correct structure, while large distances will mean that the 
structures are highly unlikely to be the correct structure of the network. 

There are a number of ways to model input-output data with noise and nonlinearities; 
we consider the additive uncertainty model. We examine the system ∆ = G − X , where X is 
the true system, G is the estimate of the system and ∆ represents the unmodelled dynamics. 
Giving the system an input U yields GU − X U.  Since Y = GU, the resulting system is 
Y − X U.  Moreover, given that X is the true system, we know that X = (I − Q)−1P , so 
the system then becomes Y − (I − Q)−1P U .  Multiplying on the left by (I − Q) gives us 
(I − Q)Y − P U . Multiplying the system out gives us Y − QY − P U, where the values of 
Q and P are unknown.  

The noisy version of this system can be solved using total least squares or the 
simpler least squares, which ignores the impact of noise on the operator, M , but is 
computationally simpler. 

Algorithm for Robust Reconstruction of Wireless Networks 
First, we note that a wireless network is reconstructible according to the necessary and 

sufficient informativity  conditions provided in [1].  Since  each link in a wireless network 
can be perturbed independently of the others, that the structure of P is diagonal, which is 
sufficient a priori information to make the system reconstructible,  as noted in [5]. 

Second, before we must ensure that the network is in an equilibrium state, which can be 
achieved using rate controllers on the wireless network. The system must be in equilibrium 
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k 

since we are applying linear tools to a nonlinear system, and we know the performance of a 
nonlinear system is similar to that of the linearized  system close to equilibrium. 

We now provide an algorithm for the reconstruction of wireless networks: 
Step 1: Perturb each link i (usually with a step input), where each perturbation is large 

enough to escape the sensor or measurement noise, but small enough to ensure it remains 
in the same basin of attraction for the equilibrium chosen. After each perturbation, the 
rate on every link in the network should be measured until the transient response from the 
perturbation is complete and the system settles into a steady state. 

Step 2: The third step is to solve the total least squares problem defined below for all 
2p2 −p  boolean structures to determine the distance α for the kth   boolean structure.  We 
could simplify this process further by restricting the search space of boolean structures to 
only include symmetric structures,  since in wireless networks we consider interference to be 
biderectional, which would mean that the structure of Q is always symmetric. 

The total least squares problem is defined as: 

which is simpler to compute, but sacrifices accuracy by ignoring the noise on the operator, 
M . 

Step 3: Given an αk corresponding to each boolean structure, use an information criterion, 
such as Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), 
or a variant (such as AICc), to select the DSF that best models the data. A full DSF can 
always fit the noise better and achieve a lower α score. To correct this problem, an 
information criterion weights the complexity of the DSF, in terms of number of edges in the 
DSF, to find a network structure that achieves a low α score with as few edges as 
possible. As a practical matter, one needs to tune the weights of the information criterion 
function to target the right degree of sparsity expected for any given application. 

For simplicity, we assume a centralized controller can perform the perturbation 
experiments, collect the data, and run the reconstruction algorithm.  Note that the 
algorithm works for any differential equation model of the 802.11 MAC, not just the one 
developed here. 

For simplicity, we assume a centralized controller can perform the perturbation 
experiments, collect the data, and run the reconstruction algorithm.  Note that the 
algorithm works for any differential equation model of the 802.11 MAC, not just the one 
developed here. 

4.1.4    Transitory Interference Detection 

We now use the differential model of the MAC presented in Section 7.1.2 to show that the 
DSF of the system changes when interfering devices are physically present  in a wireless 
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Contention Region 1   

Link 1 

Clique 1 

Link 4 
Link 2 

Link 3 

Contention Region 2 

(a) Topology 

Clique 2 

(b) Contention graph 

Figure 6: Example wireless network, with transitory devices shown in red, along with 
corresponding contention graph. 

network. Whenever new wireless devices intrude on an existing network, the map changes 
because of the coupling it creates. Since the map is easy to create, whenever the performance 
of the links changes, we can recalculate the map in order to examine the network for possible 
interference from transitory devices. These devices could be other computers with WiFi 
interfaces or any device that emits an RF signal on the same frequency as the managed 
WiFi network. 
Reconstruction Without Transitory Interference 

Consider the wireless network as shown in Figure 6a, but without link 4 present. The 
contention graph for this network is given in Figure 6b, but without the node 4 and without 
any of the edges connected to node 4. We show how to derive the exact DSF for this network, 
assuming we know the differential equation model for the MAC presented in Section 7.1.2. 
This will provide a “ground truth” for the network, which the reconstruction algorithm 
should match. For this network, the equations describing the rates obtained by these links 
are given by: 

Assume that a rate controller is being used on all the links to give fair network 
performance. The equilibrium rates for this network are u1  = 0.4, u2  = 0.4, and u3  = 0.4. 
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(a) Before intrusion (b) After intrusion

Figure 7. Structure before and after intrusion. 

We linearize the system of equations in (10) around this equilibrium to get: 

The exact (Q, P ) for this system is: 

A graphical representation of this DSF is shown in Figure 7a. 
In practical situations, it is not possible to know the system of differential equations that 

describe the wireless network. In this case, we must use the robust reconstruction method 
described in Section 4.1.3 to determine the boolean structure of the DSF. 

Step 1: Perturb each link and record the measurements of each perturbation experiment. 
The results of these experiments are shown in Figure 8. 

Step 2: Using the noisy data that is collected, find the least squares solution, αk , for 
all possible boolean structures. The results are in Table 1, along with their associated AIC 
values. 

Step 3: Calculate the AI C values for each boolean structure using the equation: 

AI Ck = 2Lk + 2ln((2παk ) + 1) (11) 
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(a) Perturbation on Link 1 (b) Perturbation on Link 2 (c) Perturbation on Link 3 

Figure 8: Perturbation Experiments for Wireless Network without Transitory Interference 

Table 1: Reconstruction Without Transient Interference 

Results of Reconstruction Process 
Boolean Structure alpha AIC

0 1   1


1 0   1 
1 0 0 

1.22 14.32 


0 1   0


1 0   1 
0 1 0 

0.14 9.262 


0 1   1


1 0   1 
0 1 0 

0.09 10.9 


0 1   0


1 0   1 
1 1 0 

0.08 10.81 


0 1   1


1 0   1 
1 1 0 

0 12 

where Lk  are the number of nonzero elements in the kth  boolean structure. 
In Table 1, we see that although the correct structure (marked in red) does not have the 

lowest α score, by using AI C we can discriminate against structures with more non-zero 
elements to determine the correct structure. 
Reconstruction With Transitory Interference 

Now let us assume that new network devices begin operating within the contention region 
of our original network, creating link 4 as shown in Figure 6a.  

(b1,b2,b3,b4) = ((u1—x1) (u2-x2) (u3-x3) (u4-x4))          (12) 
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The new devices decide to set their load to u4  = 0.2. This gives them the equilibrium 
sending rates of x4 = 0.2. To keep the buffer from growing too large, link 2 has to recalibrate 
its sending rate to u2 = 0.2 decreasing its rate to 0.2. Linearizing around the new equilibrium, 

I
b1 b2  b3  b4  x1  x2  x3  x4

l 
= I

1   1.5  1 1.5  0.4  0.2  0.4  0.2
l

yields: 

The new DSF, using the inputs on nodes 1, 2, and 3, is given by 

(a) Perturbation on Link 1 (b) Perturbation on Link 2 (c) Perturbation on Link 3 

Figure 9: Perturbation Experiments for Wireless Network with Transitory Interference 

19 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



where d(s) = 2500s4 + 4200s3 + 1646s2 + 287s + 11. 
Again, these dynamical structure functions (Q, P) have been determined  directly from 

the differential equations. We will now assume that the differential equations that describe 
the wireless network are unknown, and we will use the robust reconstruction process from 
Section 4.1.3 to determine the boolean structure of the network while the interference is 
occurring. 

Step 1: Perturb each link and record the measurements of each perturbation experiment. 
The results of these experiments are shown in Figure 9. 

Step 2: Using the noisy data that is collected, find the least squares solution, αk, for 
all possible boolean structures. The results are in Table 2, along with their associated AI C 
values. 

Step 3: Calculate the AIC values for each boolean structure using Equation (11). 
As we can now see, the correct structure, marked in red Table 2, is now the fully connected 

network. A graphical representation of this DSF is shown in Figure 7b. We can see that the 
links 1 and 3 were not coupled in Figure 7a, but now they appear coupled. This signals the 
presence of interfering wireless devices. 

If the new devices do not create new links in the DSF, but do change the transfer functions 
contained in Q and P, then the presence of such an intruder is harder to detect. 

4.2  Necessary and sufficient conditions for network reconstruction 
Identifiability conditions fundamentally concern the definition of a map from model 
parameters to data and ensuring that it is injective. In this way, a particular set of 
parameters is 
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th

Results of Reconstruction Process 
Boolean Structure alpha AIC

0 1   1


1 0   1 
1 0 0 

34.82 20.79 


0 1   0


1 0   1 
0 1 0 

2.77 13.83 


0 1   1


1 0   1 
0 1 0 

1.96 15.18 


0 1   0


1 0   1 
1 1 0 

0.81 13.61 


0 1   1


1 0   1 
1 1 0 

0.03 12.35 

Table 2: Reconstruction With Transient Interference 

uniquely specified by the data, identifying the correct model from the set of models under 
consideration. 

Identifying a system’s DSF from data involves the standard issues related to identifying 
a TF from data (sufficiency of excitation, etc.), along with additional issues related to the 
fact that many DSF generate the same TF (consider Lemma 1).  In the sequel we will 
ignore the standard issues and focus on the additional identifiability  issues unique to DSF. 
Consequently we will assume that the system’s TF has been successfully identified from data 
and focus on necessary and sufficient conditions for then recovering the DSF. To accomplish 
this, we will construct the map from the elements of the DSF to the associated TF and 
establish conditions  ensuring this map is injective. 

To facilitate the discussion,  we introduce the following notation.  Let A ∈ Cn×m   and 
B ∈ Ck×l . Then: 

• blckdiag(A, B) is the block diagonal matrix given by

A  0 
0 B  ,

• ai  is the ith column of matrix A,

• A−i  is the matrix A without it’s i

• aij  is the (i, j)th  entry of matrix A,

• A’  is the conjugate transpose of matrix A,

• R(A)  is the range of A,

• →−a is the vector stack of the columns of A, given by a1…am
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1 2 p 

1 2 p 

• and ←−a is the vector stack of the columns of A’.

We begin by rearranging the fundamental DSF relationship, G = (I − Q)−1P to yield: 

Noting that 

AX  = B  ⇐⇒ blckdiag(A, ..., A)x = b 

and defining X = 
I 

P t Qt  l then allows us to rewrite Equation (13) as 

I  blckdiag(G’, ..., G’) 
 ←x− = ←−g . (14) 

Further noting that since the diagonal elements of Q are identically zero and the dimensions
of P , Q, and G are p × m, p × p, and p × m respectively, then exactly p elements of ←x− 
are always zero. Abusing notation, we can then redefine ←x− to remove these zero elements,
reducing Equation (14) to the following: 

I blckdiag(Gt − , G
t − , ..., Gt − ) 

 ←x− = ←−g . (15) 

Equation (15) reveals the mapping from elements of the DSF, contained in ←x−, to its 
associated TF, represented by ←−g .  The mapping is clearly a linear transformation repre-

sented by the matrix operator 
 
I  blckdiag(Gt − , Gt − , ..., Gt − ) .  This matrix has dimen-

sions (pm) × (pm + p2 − p), and thus the transformation is certainly not injective. This is 
why not even the Boolean structure of a system’s DSF can be identified – even from perfect 
information about the system’s TF – without additional a priori structural information. 

Identifiability  conditions will thus be established  by determining which elements of ←x− 
must be known a priori in order to reduce the corresponding transformation to an injective 
map. To accomplish this, consider the (pm + p2 − p) × k transformation T such that 

←x− = T z (16) 

where z is an arbitrary vector of size k. The following lemma describes technical conditions 
on T establishing  necessary and sufficient identifiability  conditions for DSF reconstruction.
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1 2 p 

1. k ≤ pm, and

2. rank(T ) = k (i.e. T is injective).

Proof. Since  I  blckdiag(Gt − , G
t − , ..., Gt − ) has rank pm, rank(M ) = min(pm, rank(T )). 

If rank(T ) > pm, implying k > pm, then M is clearly not injective. If rank(T ) ≤ pm, then 
rank(M ) = rank(T ) and M will be injective if and only if k = rank(T ). 

Theorem 1. (Identifiability  Conditions) Given a system characterized by the transfer func- 
tion G, its DSF (Q, P ) can be identified if and only if 

1. M , defined as in Equation (17), is injective, and

2. ←−g  ∈ R(M ).

Proof. The proof follows immediately from the observation that  M  is the mapping from 
unidentified model parameters to the system TF. Under these conditions one can clearly 
solve for z given G and then construct the DSF from ←x−, where ←x− = T z, and T is precisely
the a priori system information that is necessary and sufficient for reconstruction. 

We will now illustrate this reconstruction result on some simple examples. 

Example 2. Consider a system with square TF given by 

Previous work has shown that if G is full rank and it is known, a priori,  that the control 
structure  P is diagonal that reconstruction  is possible.  Here we validate that claim by 
demonstrating that the associated T matrix becomes: 

23 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Q = 12 

where ei   is a zero vector with 1 in the ith  position.  Note that M  is a square matrix with 
dimensions p2 × p2 and will be invertible provided G is full rank, thus enabling reconstruction. 

Example 3. Given the following TF of a system: 

We attempt to find the DSF (Q, P ) of the system: 

0 Q 

Q21 0 and

P =  P11 P12
      P21     P22

yielding the vector of unknowns x = P11 P12 P21 P22 Q12 Q21
’.   This gives us the 

system of equations of the form Lx = b: 

Without additional information a priori structural information, we can not reconstruct.  Sup- 
pose, however, that we know a priori that P takes the form: 

P =  P11 −P11

0 P22
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Note that this non-diagonal P fails to meet the previous conditions for reconstruction  [6]. 
Nevertheless, the vector of unknowns x can then be decomposed into the form T z as follows: 

25 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



In this case M is full rank, from theorem 1 we know that the system is reconstructible.  By 
solving for x = (M )−1b we get the DSF to be: 

4.3    Vulnerability of open- and closed-loop systems 
4.3.1    Attack Models 

In the literature, attacks on control systems have been classified into two types:   denial 
of service attacks, when the attacker jams a channel in order to destabilize the system, 
and deception attacks, when the attack adds perturbations on particular links in order to 
compromises the reliability of the controller’s state estimates [11].  We consider a hybrid 
attack model where the attacker adds perturbations to the channels, not just jam them, in 
order to destabilize the system. We call this type of attack a destabilizing attack. 
Denial of Service (DoS) Attack Denial of service attacks prevent signals from reaching 
their intended destination. This is probably the easiest and most common attack, and it is 
modeled as removal of an edge in an interconnected structure.  It might be done by jam- 
ming the communication channel, disrupting the transmitter/receiver, changing the routing 
protocol, saturating the receiver with extraneous signals, etc. The attacker’s intent of such 
an attack could be to degrade the system performance or to completely destabilize it.  [10] 
shows that performance of networked control systems could decrease significantly under a 
DoS attack. [11] gives a method to find an optimal controller that minimizes the effect of 
such an attack on linear control systems. 

In [12], the authors study whether a DoS attack on certain links can make the system 
unreachable or uncontrollable. They also develop graph theoretic algorithms to identify the 
minimal number of edges which are necessary for preserving controllability and observability. 
Deception Attack The goal of a deception attack is to change the state estimates computed 
by a model-based controller. This type of attack is modeled as a stable additive perturbation 
to an edge in the network. All stabilizing controllers make the closed loop system stable, 
hence, a stabilizing controller is necessarily stabilizable from the plant. So, if at attacker gains 
access to the communication channel between the plant and the controller, state estimates of 
a model-based controller can be altered. To prevent this, many real systems such as power 
systems, sensor networks,  etc., are equipped with a Bad Data Detector (BDD) [13, 8, 14]. A 
BDD, using the model of the plant, detects deviation of the state estimates from the expected 
and raises an alarm to notify the human operator. Because of the presence of measurement 
noise, this deviation is never zero, so the BDD ignores deviations that are smaller than a 
specified threshold.  Hence, in the presence of BDDs, the attack has to change the state 
estimates without increasing the chance of raising an alarm.
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In [13] the authors study this kind of attack in the context of a power system. They 
show that it is in fact possible for an attacker to change the state estimates to a specific 
value without increasing the chance of being detected.  [14] studies a similar problem in the 
scenario of a wireless sensor networks. It maps an approximation of the set of all possible 
values the attacker could drive the estimates to. 

[8] studies a slightly different problem. Here, the goal of the attacker is to change the 
estimate of one of the states without increasing the chance of being detected. The authors 
recognize that while doing this the attacker might want to use the fewest channels possible 
or might try to keep the magnitude of the attack signal small. For each type of attack, the 
authors then give a formulation of a security index of the system. 
Destabilizing Attack Like deception attacks, these attacks effectively arise as an additive 
perturbation on a link in the system interconnection structure.  Unlike deception attacks, 
however, they seek to destabilize the system rather than simply move the system state to 
a desired value without being detected. BDDs are clearly capable of detecting the 
destabilization resulting from such attacks, nevertheless serious damage and even 
complete plant shut-down may result by the time system operators are able to do anything 
about it. 

A rich literature in systems and control theory explores the destabilization of systems due 
to additive perturbations, see for example [4] and the references therein. Security analysis of 
destabilizing attacks thus appears to be a robustness problem with respect to certain classes 
of perturbations. Indeed, we adopt this point of view, and consider security problems to be 
essentially robustness problems of various types. 

The contribution of this work, then, applied to this class of attacks, is in the solution 
of a certain class of robustness problems over a particular kind of link model–corresponding 
to logical, rather than the physical, links of a system–and with respect to a specific class 
of perturbations. Unlike standard robustness measures that generally consider destabilizing 
perturbations acting over all channels and nodes of a system, here we restrict our attention 
specifically to perturbations that disrupt a single link in the system’s signal structure. Our 
analysis then considers such single-link perturbations over all possible system links. In the 
next section we explore our link model in detail. 

4.3.2    Link Models 

The destabilizing attacks considered here are additive perturbations acting on a single link in 
a system’s logical interconnection structure. There are many characterizations of a system’s 
structure, see for example [15, 16]. One characterization would consider the interconnection 
structure among subsystems. This definition of structure, also called the system’s subsystem 
structure, would represent the physical interconnection between physical components of a 
particular networked system. Under this notion of structure, a link would represent the signal 
passing between two subsystem  nodes within  the subsystem interconnection architecture. 
In contrast to the subsystem structure, this work considers another definition of system 
structure and, consequently, a different notion of a system link. 

In this work, we consider a partition on signals of the system into two categories: exposed 
signals and hidden signals. The logical interconnection structure, or architecture–also called 
the system’s signal structure–is the causal relationship between exposed signals in the system. 
In this definition of structure, a link is a system describing the causal dependency between 
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two exposed signal nodes of the logical interconnection architecture. 
Some important consequences of this definition of link include the fact that a link may 

represent a very indirect and complicated pathway–through various hidden signals that may 
be components of other links in the system. Thus a link is associated with a particular 
set of dynamics–a system–that characterizes how the input signal is transformed into the 
output signal.  The fact that hidden signals may be shared between links, however, is an 
important distinction between signal and subsystem interconnection structures.  Note that 
a state of one subsystem, interconnected with others in a subsystem architecture (such 
as a standard feedback interconnection between two blocks), is never shared with  other 
subsystems;  the subsystem architecture effectively partitions the states of the networked 
system. In contrast, states on the links of the signal structure may, in fact, be shared with 
those of other links. This degree of abstraction is important for security problems because 
an additive perturbation on a link of the signal structure does not represent the corruption 
of a particular channel,  as it would in the subsystem structure, but rather the idea that an 
attacker infiltrated a particular dependency between specific manifest variables. 

The next section provides some background on Dynamical Structure Functions (DSF), 
which are used to represent the signal structure of a system. The DSF is a system 
representation that describes more structure, in the logical interconnection sense, than the 
transfer function provides, but less than the state space realization would reveal. 
Specifically, the DSF describes exactly the causal dependencies between manifest variables 
without offering any indication of the structure relating hidden variables. As a result, 
although every state space realization specifies a unique DSF, and every DSF specifies a 
unique transfer function, there are many DSF architectures consistent with any specific 
transfer function, and many state space realizations consistent with any specific DSF. 

4.3.3    Background: Dynamical  Structure Function 
Before developing the main theorem, we will present a concise derivation of the dynamical 
structure function, and explain its relevance to the security of a networked system. For a 
complete derivation and results on different representations of structure see [16, 9, 6]. 

Let us consider a state-space LTI system 

(18)

where C̄1 C̄2 has full row rank. This system can be transformed to: 

(19)

Here y are the states that are measured, and x are the hidden states. Now, taking Laplace 
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Transforms of the signals in (19), we get 

 (20)            

Solving for X in the second equation of (20) gives 
X = (sI − A22)−1A21Y + (sI − A22)−1B2U 

Substituting into the first equation of (20) we get, 

sY = W Y + V U, 

where W = A11 + A12(sI − A22)−1A21  and V = A12(sI − A22)−1B2 + B1. Let D be a diagonal 
matrix with the diagonal entries of W . Then, 

(sI − D)Y = (W − D)Y + V U. 

Now we can rewrite this equation as, 

where 

and 

Y = QY + P U, (21) 

Q = (sI − D)−1(W − D) 

P = (sI − D)−1V. 
The matrix Q is a matrix of transfer functions from Yi  to Yj , i /= j, or relating each 
measuredsignal to the other measured signals. Note that Q is zero on the diagonal and 
either zero or a strictly proper transfer function on the off diagonal. The matrix P is a 
matrix of zeros or strictly proper transfer functions from each input to each output without 
depending on any additional measured states. Together, the pair (Q(s), P (s)) is called the 
dynamical structure function for system (18). 

The transfer function matrix for this system is given by 
G = (I − Q)−1P = C (sI − A)−1B. 

Hence, Gij is the closed loop transfer function from input j to state i.  In this paper, we will 
also refer to the closed loop transfer function between states. A transfer function from state 
j to state i is represented by Hij , where 

H = (I − Q)−1. 

Note that the transfer function from a state to an input is always zero. 

Definition 1. Given a system 18 with signal structure characterized by the dynamical 
structure function (P,Q),  a link (i, j)  of the system corresponds to any nonzero entry in 
P or Q. 

Note that P gives the links from the inputs to the measured states, and Q gives the links 
that represent the dependencies between the measured states. The next section will introduce 
the notion of vulnerability and characterize vulnerable links in the system’s architecture 
characterized by (P, Q). 
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4.3.4    Vulnerable Links 

In this work, vulnerability refers to the destabilization of a system resulting from the 
corruption of a single link in its signal architecture. We begin with a definition of a 
vulnerable link. 

Definition 2. Given a system 18 with signal structure characterized by the dynamical 
structure function (P,Q), a link in (P,Q) is called vulnerable if there exists a stable 
perturbation on the link that makes the system unstable. 

Example 4. Let us consider a system with 

This system is stable because the transfer function,

Now let us add a perturbation ∆ =   3   to the link Q12 as shown in Figure 10. The resulting 
transfer function is G 

which is unstable. Hence the link Q12  is a vulnerable link.  Similarly, it can be shown that 
Q21 is vulnerable, although neither P11 nor P22 are vulnerable.

Figure 10: The system with the perturbation ∆.  Black arrows indicate secure links, while 
blue arrows indicate vulnerable links. 

Condition for Vulnerability Given that an attacker has the knowledge of the 
dynamical structure function representation of a system, we will derive a necessary and 
sufficient condition for a link to be vulnerable. 

Theorem 2. Let us consider a stable system (P, Q).  There exists a stable additive 
perturbation ∆ on a link from node i to node j, either in P or Q, that makes the system 
unstable if and only if the closed loop transfer function from node j to i is nonzero.  
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Figure 11: System with the perturbation ∆eieT

dj + Tij  
wi 

w  ∆  +  di 

Figure 12: Necessary and sufficient condition for stability of the system in Figure 11 

Proof. The system with the perturbation ∆ can be represented as the linear fractional trans- 
formation in Figure 11, where T is the associated closed loop transfer function, and wi, wj
represent the signals at node i and j respectively. This system is stable if and only if the 
system in Figure 12 is stable (see [4]). If Tij  = 0, any stable ∆ does not affect the stability 
of the system in Figure 12. Thus the closed loop system in Figure 11 is stable for all ∆. 

If Tij   /= 0, then the system in Figure 12 is unstable if any of the transfer functions of 
dj

di 
→

wj

wi 
is unstable. We have,

1 T  ∆  ∆
  dj    .

Let Tij  =  N 

wj  = 
1 − T  ∆ ij  di

and ∆ =  δN , then 
D 

wj  = 
Dδ

DδD

D  − N δN

N δN δN
DδD δD

dj

di    
. (22) 

For a polynomial to be stable it is necessary that all its coefficients are of the same sign. 
In the case of the polynomial 

R(s) = DδD  − N δN , (23) 
it is easy to see that a properly designed ∆ can zero out at least one of the terms. Thus, 
there exists a ∆ that destabilizes these transfer functions.  Note that when we are 
considering the vulnerability of the links in Q, T = H = (I −Q)−1, gives the closed loop 

transfer functions. Now, we will present some implications of this result. 
Corollary  1. None of the links in P are vulnerable. 

Proof. This is true because the transfer function from the states to the input is always 
zero. 
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Corollary 2. If Tij  is nonzero, there exists a perturbation ∆ ∈ R that destabilizes the system 
in Figure 12. 

Proof. Let ∆ ∈ R, lij  =  Nl .  Thus,  δn =  ∆Dl +Nl , and the polynomial in (23) becomes 

Dl δd Dl 

Dl D − N (Dl ∆ + Nl ).  We can see that at least one of the terms in this polynomial can be 
zeroed out by choosing appropriate ∆, making the polynomial unstable. 

Corollary  3. Let us consider a stable system, 

ẋ = Ax + I u, (24) 
y = I x, 

where A ∈ Rn×n  and let G = (sI − A)−1.  There exists a perturbation K  = ∆eieT , ∆ ∈ R, 
 

such that (A   + K ))  is  not  Hurwitz , if and only if the transfer funtion from input ui to

output yj , Gji, is nonzero. 

Proof. If the perturbation is on the diagonal entry of A, then it is easy to see that a 
destabilizing perturbation always exists and Gii  is never zero. Let D = diag(A11, A22, ..., 
Ann). 
The dynamical structure function of the system is given by P  = (sI − D)−1   and Q = 

(sI − D)−1(A − D).  Any perturbation K  = ∆eieT , i /= j effects only the link Qij . Hence, 
the perturbation can make the system unstable if and only if the transfer function Hji  is 
nonzero. Also, the diagonal entries of P are nonzero, and G = H P .  Thus, the transfer 
function Hij  is nonzero if and only if Gji  is nonzero. 

Example 5. Let us consider a system of the form (24) with 

| −1    0    −4    3 | 
A =  | 2   −2    0      0  | 

| 3     0    −2   −4 | 
| 0    3    −2    −5 | 

Here the eigenvalue of A are σ = {−1.5000 + 3.4278j, −1.5000 − 3.4278j, −6.7016, −0.2984}. 
Hence, the system is stable. In this system, the link from x4  to x1  is not vulnerable  because 
G41 = 0. Notice that this example is not a trivial example, like a diagonal or a triangular 
system, since there are cycles that contain both nodes x1  and x4. 

Corollary 4. Let A ∈ Rn×n.  A perturbation on the (i, j)th  entry of A changes its eigenvalues 
if and only if the Gji  /= 0, where G = (sI − A)−1  is the transfer function matrix i.e.  the 
(i, j) minor of (sI − A) is nonzero. 

Proof. Take the system from Corollary 3.  We can see that  a perturbation on the (i, j)th

32 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



entry has no effect on the system if Gij   = 0.  Also, if Gji  /= 0, the perturbation forms a 
closed loop system,  such as the one given in Figure 12, in which case ∆ definitely changes 
the poles of the system. 

If we take the A matrix from Example 5, note that its eigenvalues stay unchanged for 
any perturbation on the (1, 4)th  entry. 
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Structure and Vulnerability To perform the vulnerability analysis of a system, we assume 
that the attacker  can only modify existing links and cannot create new links.  With  this 
assumption,  we can see that systems where the output nodes do not form a cycle are always 
secure, because in such a case the nodes can be permuted  to obtain a triangular Q matrix. 
A triangular Q matrix gives a triangular H , and by applying Theorem 2 we can see that 
all the existing links are secure.  Note that secure links doesn’t always mean they are from 
a triangular system. For example, the link Q14 is secure in the system given in Figure 13, 
which is the signal structure architecture of the state-space system in Example 5.

Figure 13: A system with a secure link in a cycle. Black arrows represent the secure links. 

Noting that certain graphical structures result in secure links begs the question of whether 
there are particular dynamics that contribute to secure or vulnerable links in the system’s 
architecture. The following theorem answers this question. 

Theorem 3. Every transfer function G has a completely secure architecture  (P̄ , Q̄). 

Proof. For any transfer function G, note that (P = G, Q = 0) is an admissible Dynamical 
Structure Function since G = (I − 0)−1G. From Corollary 1, we see that none of the links 
in P are vulnerable, and since Q has no links, the system is secure. 

This result shows that the vulnerability of a system is structure dependent and not 
a function of the system dynamics.  This fact highlights one difference between the 
vulnerability, which depends on the system structure and not the dynamics, and the 
robustness, which depends on the dynamics and not the system structure. 
Measure of Vulnerability 

Feedback is very common in both natural and engineered systems. Nevertheless, such 
structures usually generate vulnerable links. Thus, a measure of vulnerability is essential to 
understand the security of the system. 

Given a signal architecture (P, Q) with associated closed loop transfer function T , the 
vulnerability of link (i, j) is given by 

vji  = ||Tij ||∞, (25) 

which is the inverse of the smallest perturbation required on link (i, j)  to destabilize the 
system.  Since all the links in P are secure, we only consider the links in Q while computing 
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the vulnerability, hence, T = H . The vulnerability of the system is given by 

V = max 
(i,j)∈Q 

= max 
(i,j)∈Q 

vji (26) 

||Tij ||∞ (27) 

This measure allows us to associate a size of the smallest destabilizing perturbation with 
every link in the system architecture. Secure links thus have a vulnerability of 0. Note that 
V , the system vulnerability, is less than or equal to the inverse of the size of the smallest 
destabilizing perturbation for the system, since link perturbations are restricted to act on a 
single link only. 

      4.3.5  Numerical  Example 
Let us consider a system with the architecture given in Figure 14 where, 

 1 
s+1 

P =   1 
s+1  

and 

 1 
s+1 

 1 
s+1 

 1 
s+2 0 0 

s+3  0 
The transfer function matrix for the system is given by 

s3 +6s2    +11s+6 
d(s) 

2 

s+2 
d(s) 

3  2 

s2 +5s+6  
d(s) 

G =  s +4s+3
d(s) 
s+1 
d(s) 

s +6s  +11s+6 
d(s) s2 

+3s+2 
d(s) 

s+3 
d(s) s3 +6s2 

+11s+6 d(s) 

where d(s) = s4 + 7s3 + 17s2 + 16s + 5.  By small gain theorem, the size of the smallest 
destabilizing perturbation is ||G||−1  = 0.42 could destabilize the system. 

Let H = (I − Q)−1 represent the transfer function between the measured states yi.  Since 
the links in P are not vulnerable,  we consider the perturbations on the links in Q which are 
the links (y1, y2), (y2, y3), and (y3, y1). To compute the vulnerability of these links we need 
the following transfer functions: 

s + 2 
H12 = s3 + 6s2 + 11s + 5 

s + 3 
H23 = s3 + 6s2 + 11s + 5 

s + 1 
H31 = s3 + 6s2 + 11s + 5 .

For this system v21 = 0.4, v32 = 0.6, and v13 = 0.2. Hence, V = v23 = 0.6 < ||G||∞, and the 
smallest perturbation on a single link that can destabilize this system must have a gain of 
V = 1.67. 
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ij 

Figure 14: Vulnerable and secure architectures for the same transfer function. Black links 
are secure, vulnerable links are colored blue, yellow, and red in the increasing order of their 
vulnerability. 

This system can also be implemented as shown in Figure 14b, where P̄ = G.  This is
one of the secure implementations of the system in Figure 14a. From this example we thus 
observe the following: 

• The same transfer function can exhibit both vulnerable and secure architectures,

• System robustness, characterized by the size of the smallest destabilizing perturbation
(0.42 in this example), is not equivalent  to the inverse of the system vulnerability,
characterized by the size of the smallest destabilizing perturbation on a single link
(about 1.67 in this example),

• Only links in Q can be vulnerable.

4.4  Design of stabilizing distributed controllers with arbitrary 
signal structure constraints 
In this section, we present a procedure to design a controller (Q, P ) with a structure given 
by (Qbin, P bin) to stabilize a plant with the transfer function matrix G.  It is an iterative 
procedure; we add the controller links to the plant such that the additional link attempts to 
stabilize the plant as well as all the previously added controller links. The procedure is as 
follows: 
Procedure P 

1. Choose an undesigned link pij  such that pbin = 1
2. Design pij  to stabilize gji  such that there is no pole zero cancellation  in P G. That is,

the controller link is designed such that it stabilizes the transfer function it sees, and there 
is no pole-zero cancellation  
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pbin 

3. After adding pij , if the closed loop system (G, P ) is still unstable, repeat for all pxy ,
xy    = 1, so  that  the added link attempts to stabilize the  plant  as  well as  all the
previously added controller links.

4. If the closed loop system S, formed by adding P in feedback with G, is still unstable,
add links in Qbin  such that there is no pole-zero cancellation between Q and S. Again,
each added link attempts to stabilize the plant G along with the previously added links
of P and Q.

Theorem 4. Given a transfer function matrix, G, and a desired signal structure for a feed- 
back controller characterized by (Qbin, P bin), Procedure P either delivers a stabilizing 
controller with the desired structure or no such controller exists. 

This theorem says that if the controller obtained using this procedure does not stabilize 
the plant, then there is no controller of the given structure that can stabilize it.  Hence, this 
procedure provides a test for the existence of a structured stabilizing controller, and if such 
a controller exists, it synthesizes a nominal stabilizing controller that meets the structural 
constraint. Before proving this theorem, we will prove some lemmata. 

Lemma 2. Let K  be the controller transfer function. A link kij  cannot affect a mode of the 
plant G that is not observable or controllable from this link. 

Proof. Let, 

Since we are only adding one link,  both of these systems  are SISO. Using the Kalman 
decomposition on G, we can transform it such that 

Here, the eigenvalues of Acō, Ac̄o, and Ac̄ō are the modes of G that are unobservable, 
uncontrollable, and both respectively from feedback link kij . 

The closed loop modes are given by the eigenvalues of the following matrix: 
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Transforming this matrix using the permutation 

we get, 

We  can see  that AclT   is block triangular, and the uncontrollable or unobservable modes, 
namely the eigenvalues of Ac̄o, Acō, and Ac̄ō, are not affected by the choices of Ak , Bk , or 
Ck . 

This result shows that when a controller link is added to the system such that it stabilizes 
all the modes that it can control and observe, it cannot destabilize other modes of the system 
that are already stable. Now, the following lemma gives a necessary and sufficient condition 
for the existence of the controller with transfer function structure K bin. 

Lemma 3. There exists a controller with pattern K bin  that stabilizes a plant G if and only if 
every unstable mode of G is controllable and observable from at least one link kij , kbin  = 1. 

Proof. From Lemma 2, we know that  a link in the feedback controller cannot affect the 
uncontrollable or unobservable modes. Hence, any controller that stabilizes a given G must 
have links such that all the unstable modes are both controllable and observable from at 
least one of the controller link.  Also, if every unstable mode is controllable and observable 
from some controller links, these links can stabilize the plant. 

lemmata 2 and 3 allow us to add links in P , since adding a link in P cannot change 
the controllability/observability of the plant for the other links in P . However, adding these 
links might cause the links in Q to lose controllability or observability of some of the modes, 
because links in Q are added on top of the links in P . Also, the links in Q themselves can 
create controllability/observability  issues for subsequent links in Q. 

Loss of observability/controllability can happen for two reasons:  structurally or by ex- 
act cancellations. If it happens  because of structural reasons, the system stays uncontrol- 
lable/unobservable for any choice of P or Q as long as it has the same structure. However, 
if the problem occurs because of exact cancellations,  we can avoid these issues by a proper 
choice of the transfer function. Lemma 4 provides a methodology to design P and Q such 
that these cancellations are prevented.  We will use the following result from [2] to prove the 
lemma. 
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Theorem 5. Let G, H be proper rational transfer function matrices and suppose that det[I + 
G(∞)H (∞)] /= 0. Then all the poles of the transfer function matrix 

W = (I + H G)− −H (I + GH )−1

G(I + H G)−1  (I + GH )−1

are stable if and only if 

• GH has no unstable pole-zero cancellation, and

• all the poles of (I + GH )−1  are stable.

Proof. See [2] Theorem 5. 

Lemma 4. Loss of controllability/observability can be prevented from each link in Q if pole- 
zero cancellations are avoided in P G and QS. Here, S is the closed loop transfer function 
that Q observes and controls. 

Proof. The transfer function that Q observes for the closed loop system formed by adding 
P in feedback with G is given by S = (I − P G)−1.  Using the Theorem 5, since there is 
no pole zero cancellations in P G, the closed loop system is stable if and only if S is stable. 
Which says that this transfer function has all the poles of the system. Hence Q observes 
and controls all the poles of the system after adding all the links in P if there is no pole zero 
cancellation in P G. 

Similarly, when adding the links in Q if there is no pole zero cancellation in QS the 
controllability  and observability properties are maintained.  That is, if a mode is observ- 
able/controllable from a link Qij  for some choices of the other links in the controller, then 
choosing the links in this fashion will keep the mode observable/controllable  from Qij . 

Now we will present the proof of Theorem 1: 

Proof. For every controller link that is added, either in P or Q, it stabilizes all the modes that 
are controllable and observable. Also, by Lemma 2, a newly added link cannot destabilize a 
mode that was already stable. Hence with every new link added to the system, the number 
of unstable modes either decreases or stays the same. 

If every unstable mode in the system is controllable and observable by some link, it gets 
stabilized. If the plant has an unstable mode that is uncontrollable and unobservable from 
every link in P and Q, then by Lemma 3, there is no controller with the given pattern that 
stabilizes the plant. Also, since the added links satisfy the conditions in Lemma 4, if a mode 
is controllable or observable from a link for any choices previously added links, then it is 
controllable and observable. 

5    Conclusions 
Our work demonstrates that Dynamical Structure Functions can be used to map the 
interference relationships of links in a wireless network. This method uses a model we 
have developed for the IEEE 802.11 MAC that uses differential equations to capture its 
dynamics 

39 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



and equilibrium behavior. An advantage of this method is that it can be used to detect 
transitory interference from devices that are not a part of the managed network. 

Two important aspects of our reconstruction algorithm are that the network must reach 
equilibrium for each perturbation test, and that the tests must be coordinated by a 
centralized controller. As part of our future work we will use experimental validation to 
explore how quickly equilibrium can be reached and the overhead required to conduct the 
experiments. We also want to test the impact of the tests on live traffic, to ensure they are 
non-invasive. We are also investigating how to distribute the reconstruction algorithm. 
Finally, we are interested in determining how we can use DSF to build an optimal rate 
controller for wireless networks. 

We also considered a number of theoretical results, namely the necessary and sufficient 
informativity conditions for network reconstruction, a theory of vulnerability for open- and 
closed-loop systems, and a heuristic for designing decentralized  controllers to satisfy an 
arbitrary signal structure constraint. Each of these results suggest new questions about the 
nature of network structure on a networks performance and robustness. Future work will 
explore these results in more detail, extending them to the nonlinear setting and introducing 
them to a variety of applications. 
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7 List of Acronyms 

AIC Akaike Information Criterion 
BIC Bayesian Information Criterion 
DOS Denial of Service 
DSI Dynamical Structure Function 
IP Internet Protocol 
MAC Media Access Control 
NS Network Simulation 
RF Radio Frequency 
TCP Transmission Control Protocol 
TF Transitory Interference 
UDP User Data Protocol 
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